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SUMMARY 

This paper describes an iterative technique for solving the coupled algebraic equations for mass and 
momentum conservation for an incompressible fluid flow. The technique is based on the simultaneous 
solution for pressure and velocity along lines. In a manner similar to AD1 methods for a single variable, the 
solution domain is entirely swept line-by-line in each co-ordinate direction successively until a converged 
solution is obtained. The tight coupling between the equations that is guaranteed by the method results 
in an economical solution of the equation set. 
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INTRODUCTION 

Most numerical procedures for predicting fluid flows subdivide the solution domain into discrete 
volumes and base predictions on the satisfaction of the governing conservation constraints over 
these volumes. For incompressible fluid flows, solution difficulties often arise because pressure 
does not appear in its constraint equation, the continuity equation. The pressure-velocity (p-V) 
coupling problem has received considerable previous attention (see Reference 1 for a review). The 
present paper presents a simple, robust, and efficient method for dealing with the p-V coupling. 

Background 

The conservation balances over the discrete volumes are expressed as a set of coupled non-linear 
algebraic equations for each dependent variable.’ A solution is achieved by solving, to some 
specified tolerance, the linear (fixed coefficient) set of equations, updating the coefficients, and 
repeating this cycle until the non-linear equations are satisfied. The equations that require solution 
for a given set of coefficients are referred to here as the ‘linear set’. This section reviews solution 
methods for incompressible flows where the equations exhibit the p -  V coupling problem. 

Various direct solvers could be used to solve the full linear set. Except for small problems, such 
an approach is unattractive owing to excessive demands on computer storage and execution time. 

Segregated solution procedures (e.g. SIMPLER’ or SIMPLEC3) are most widely used to solve 
the linear set. In these, the subset of momentum equations for each velocity component is solved 
separately, usually by some iterative method, using an estimate of the pressure. The pressure and 
velocities are then corrected by solving another equation set that enforces mass conservation. This 
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cycle may be repeated to account for the coupling between the segregated equation sets, but usually 
one cycle is most cost-effective. 

In another procedure, iterative solvers are applied, whereby the values of all variables are 
simultaneously improved. Although somewhat more complex, such methods implicitly account for 
inter-variable couplings. Blottner4 used a 'block ADI' procedure to solve the coupled boundary 
layer equations. Van Doormaal et al? and Rubin and Khosla6 solved the full two-dimensional 
(2D) incompressible flow equations expressed in terms of stream function and vorticity. 

Only very recently have such solvers been applied to solve the 2D equations in the primitive 
variables u, v and p .  Van Doormaal and Raithby7 solved the momentum and continuity equations 
simultaneously along lines using the 'raw' form of continuity (zero velocity divergence). Zedan and 
Schneider8-' ' obtained an equation for pressure by substituting the algebraic momentum 
equations into the continuity equation. This pressure equation, together with the momentum 
equations, was solved by iteration using a number of coupled equation solvers. In the first of these 
two approaches, mass conservation is always exactly satisfied while the iteration improves the 
satisfaction of the momentum equations. In the second approach, the satisfaction of both mass and 
momentum conservation is improved by iteration. The relative advantages of the two approaches 
are not yet clear. 

Objectives and attributes of a new coupled equation line solver (CELS) 

The present study was directed at  reformulating the method proposed by Van Doormaal 
and R a i t h b ~ . ~  Deficiencies of this method included the complexity of the derivation and coding 
of the equations, and the relatively large computer overhead associated with the storage of 
coefficients. Another major detraction was the inability to prescribe one or more local pressures 
within the solution domain. This complicated both the prescription of a reference pressure and the 
prediction of flows driven by a pressure difference. The present reformulation resulted in a coupled 
equation line solver (CELS) for the primitive-variable equations of mass and momentum, with the 
following attributes: 

The iterative procedure always enforces mass conservation exactly. The iterative improve- 
ment of variables is based on the direct solution of the mass and momentum equations along 
lines. 
The CELS method is simple to derive and is easier to code than many of the commonly used 
segregated solution procedures. 
The solver permits a direct specification of pressure wherever desired. 
The solver is extremely robust for the problems investigated to date. 

This paper limits attention to the solution of the two-dimensional incompressible flow 
equations. The method is not restricted to just the pressure-velocity coupling and has been 
extended to other couplings such as those that occur in natural convection problems between 
momentum and energy conservation. Extensions to three dimensions are also possible. 

EQUATIONS OF MOTION 

The conservation equations for mass and momentum for a steady, two-dimensional, incom- 
pressible flow can be expressed in the following differential form:2 
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In these equations u and v are the velocity components in the x and y directions, p is pressure, and p 
is either the laminar or effective (laminar plus turbulent) viscosity. In a manner consistent with the 
'incompressible' flow formulation, the density p is taken as constant. 

To derive the algebraic analogue of equations (1)-(3), a mesh is overlaid on the solution domain 
and any of a number of discretization methods applied. In this paper the staggered mesh of Harlow 
and Welch12 is used, so that velocities and pressures are stored at  the locations indicated in 
Figure 1. The algebraic equations for continuity for the volume having p i j  at its centre, and the 
momentum equations for uij and t i i j  can be written in the following form: 

0 = + A & U i -  I j  + A;vij + AEUij- 1, (4) 

A ; u i j = A ~ u i + , j + A ~ u i _ , j + A l ; u i j + ,  + A i u i j - 1  - Cu(pi+lj-pij)+B", (54  

A',tiij = A;;tii+ 1j  + A',?+ l j  + A;;Uij+ 1 + .4;vij- 1 - C'(p,+ 1 - P i j )  + B', (64  
where 

There is one continuity equation for each interior control volume in Figure 1 and one momentum 
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Figure 1. Grid layout showing storage location for variables u, u and p .  The variables obtained in a simultaneous solution 
along the j-line are indicated by solid symbols 
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equation for each interior velocity shown. The application of boundary conditions provides 
additional algebraic equations for the velocity component that lies normal to and on the boundary, 
and for the component that lies tangent to and outside the boundary. 

Equations (1)-(3) are non-linear and this is reflected by a dependence of the coefficients in 
equations (4)-(6) on the dependent variables. As described earlier, the linear equation set is solved 
using these fixed coefficients to obtain still better estimates of the dependent variables, the 
coefficients are then updated and the cycle repeated until convergence is achieved. To accelerate 
convergence or prevent divergence of the coefficient update loop, the E factor',3 is used to 
introduce relaxation into equations (5) and (6). The physical interpretation and advantages of the 
E-factor formulation are discussed el~ewhere.~ It is sufficient to point out here that, to justify the 
use of implicit (as opposed to fully explicit) methods, a solution algorithm should perform well for 
values of E in excess of 2. 

The coefficients of the algebraic equations for the discrete velocities and pressures (equations (4)- 
(6)) were derived in this study using the finite volume method described by Patankar.2 Two minor 
variations involved the use of the upstream-weighted differencing scheme of Raithby and 
T ~ r r a n c e , ' ~  and the E-factor formulation as shown above. 

PROPOSED SOLUTION METHOD 

Derivation of the coupled equation line solver (CELS) 

Line Gauss Seidel (LGS) methods (or relaxation forms of AD1 methods) are frequently applied 
to solve the equations for a single variable. The term LGS is intended here to include any method 
which solves an equation directly along a line, and iteratively improves the solution by successively 
sweeping the domain (solving along each line in a given sweep) in alternating directions. The 
present CELS method falls within this expanded definition of LGS methods in that three coupled 
equations (4)-(6) are solved directly along each line. 

Attention is now turned to the derivation of the method for solving these coupled equations 
along a line. 

A direct solution along the line of constant j in Figure 1 results in new values of all the 
variables indicated by solid symbols in this Figure. The pressures and velocities off the line, 
designated by open symbols in Figure 1, are held fixed at their most recent estimates. Along a line of 
constant j ,  equations (4)-(6) can be written as 

where the new source terms are 

bc = A ~ v : -  1. (9b) 
Subscripts of i and j are implied on all coefficients and variables unless otherwise explicitly 
indicated. The upper case coefficients are the original coefficients in equations (4)-(6). The lower 
case coefficients apply along a line of constant j .  Variables denoted with superscript * indicate 
their most recent values. These conventions are used for the remainder of the derivation. 
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Step 1. 
and i -  1 
equation, 

The first step in the derivation is to use the three continuity equations, (9), for the i, i + 1 
volumes to eliminate, respectively, ui, ui+ and ui- from equation (8a). The resulting 
rearranged to isolate pi,  is 

or, more compactly, 

where the coefficients are 

a; = cv, 

Step 2. The second step is to use the derived pressure equation, (lOa), for the i and i + 1 volumes 
to eliminate, respectively, p i  and pi+ from equation (7a). The following penta-diagonal equation 
for ui results: 

a"pi = u ; ~ u ~ + ~  + ~ ; u ~ + ~  + a;ui-, + u ~ ~ u ~ - ~  + b*U, (1 1.4 

or, more compactly, 
i + 2  

i - 2  
agui = 1 #bu,b + b*U, ( I lb)  

where the coefficients are 
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A penta-diagonal solver can be used to efficiently solve equation (1 la) (see Appendix). 
With each u-velocity along the line now known, a direct substitution into equation (9a) yields 

values of vi, and into equation (10aj yields values of pi. Computational effort is required to calculate 
the coefficients of equations (9)-(1 I), which are stored for future use, and to solve in the proposed 
manner. This effort only marginally exceeds that required for three uncoupled tri-diagonal 
solutions of u, v and p as in a segregated solution procedure. The additional storage requirements 
for the proposed method are approximately equivalent to the requirements for storing the 
coefficients of equations (4)-(6). This storage is several times that required for segregated methods 
but is significantly less than other simultaneous solution methods. 

Pressure can be specified at any point by setting all the coefficients on velocity in equation (loa) 
to zero, and by replacing bP by aPppSpec, where pspec is the specified pressure. This replaces a 
continuity equation by the pressure specification as discussed in Reference 3. 

Solution method 

To improve the solution for u, u and p over the entire calculation domain, the grid is swept line- 
by-line in one direction (e.g. the y-sweep direction in Figure l), followed by a similar sweep in the 
other direction. Improved estimates of the dependent variables from one line sweep are used as the 
best available off-line values in the next line solution. The sweeps are repeated, for a given set of 
coefficients in equations (4)-(6j, until some convergence criterion is met. The residual reduction 
criterion described in Reference 3 was used in the present study. 

Special treatment on the last line. In the implementation of the present procedure, special 
attention is required on the last line ( j  = M - 1 in Figure 1) because the equations for the u velocities 
on the boundary are the boundary conditions and not, as for other lines, equation (8a). The viM- 
velocities are therefore directly found from the boundary conditions. Mass conservation applied to 
each volume directly yields the uiM- velocities. Equation (6) is then applied forj  = M - 2 to obtain 
the p i M -  pressures along the last line. 

Block correction of pressure. After a solution along the j  - 1 line in Figure 1, the u i j -  velocities 
are held fixed when CELS is applied to the j line. This decouples the pressures between these lines, 
leaving the level of p on the j line to be determined by pressures on the j  + 1 line. This decoupling 
slows the convergence of the solver, and can be largely avoided by adjusting the pressure levels of 
each line after each sweep is completed. For the j-sweep in Figure 1, this requires adding 6 p j  to 
the pressure in each line; the constraint that determines 6 p j  is that the u-momentum equations 
must be satisfied on the average along the j line. If the pressures pij along the j + 1 line have 
already been corrected, 6 p j  is obtained from 

c 

Each pressure on the j line is then adjusted using 

p i j  = p$ + 6 p j ,  for all i. (13) 

This procedure is repeated for each j beginning a t j  = M - 2 and ending on the firstj line interior to 
the solution domain. 
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Relaxation within the solver. The solution along each line would yield the exact solution to the 
problem if the variables ahead of the line were correct. In the above derivation of the coupled 
solver, it was assumed that the most recent (approximate) values were used both behind and ahead 
of the line. 

When a small E is used in the generation of the coefficients of the linear set, significant under- 
relaxation is present such that the effective radius of influence of pressure on momentum is very 
local, as discussed by Zedan and Schneider.8 In this instance the approximations introduced in 
forming the coupled line equations (i.e. fixing the off-line variables at their best estimates) is 
physically consistent and thus CELS converges monotonically and rapidly. 

When a large E ,  ( E  2 20), is used in the generation of the coefficients, the radius of influence of 
pressure increases, and iterative procedures generally become less effective. In this instance, CELS 
becomes slow to converge, as the iterative solution is now very sensitive to the estimates of off-line 
variables. Experience has shown that the introduction of a simple relaxation into CELS 
considerably enhances convergence at high E. The relaxation is introduced by modifying the 
linearized momentum equations as follows (for a line of constant j j :  

A;: u j=  A ~ u i c 1 + A ~ : u i _ , + C U ( p i - p i + , ) + b U + - u ~ ,  
e 

The values of u* and v* are the values of u and v calculated in the last sweep of the solution 
domain, and e is the linear equation solver relaxation parameter that is analogous to E used in 
the coefficient update loop. When CELS converges, ui = uT and ui = vT, and the relaxation-related 
terms disappear. For the tests to date, it has been observed that CELS performs best with no 
solver relaxation (e = 03) for E 5 20, and with e z 5 for E 20, but the solver is insensitive to 
the precise value of e used. 

TEST OF SOLUTION METHODS 

Test problems 

For the purpose of demonstrating the applicability of the proposed CELS method and to 
evaluate its performance relative to existing segregated methods, two fluid flow problems were 
solved. An internal flow problem, involving laminar flow in a rectangular tank with a 4:l aspect 
ratio, was solved using a 22 x 22 grid (20 x 20 interior mass control volumes). The geometry, 
boundary conditions and velocity vectors for this problem are depicted in Figure2(A). As an 
external flow problem, the laminar flow of air over a rearward facing step was predicted using a 
27 x 17 grid (25 x 15 interior mass control volumes); the geometry and velocities for this problem 
are shown in Figure 2(B). 

Three solution methods were tested: the SIMPLE and SIMPLER methods of Patankar’ and 
CELS. The performance of SIMPLE was enhanced by using the SIMPLEC3 (or consistent ‘time 
step’’) formulation. 

For each problem the ‘exact’ solution to the discrete equations, for the chosen grid and discrete 
method,’ was first determined. To within machine accuracy, this solution is independent of the 
solver used. The velocity and pressure fields were then initialized to zero and the computational 
effort required for each solution method to achieve an accuracy of & 0.5 per cent was determined 
for both problems. Accuracy was defined as the maximum error in the pressure field normalized by 
the range of pressure in the exact solution. 
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Vin = Vout * 0.4 m/s 

ReL= 64,000 

(B) H = 0.0381 m 
Vi, = 0.1 m/s 

Re, = 260 

Figure 2. Velocity vectors for the (A) confined water flow and (B) external air flow test problem. Velocities are zero on all 
solid boundaries. The prescribed velocities at the inlet and outlet boundaries are uniform 

The computational effort required for each of the methods to satisfy the above requirement 
depends on a number of parameters including the relaxation factor E and the convergence criteria 
used to terminate the iterative solutions of equations for each fixed set of coefficients. The 
dependence of computational effort on E for each of the methods is reported below. The 
convergence criteria for each method were selected to yield minimum total computational effort at 
the optimal E value for the given method and problem. All calculations were carried out on an 
IBM 4341-Type 1 installation using single precision FORTRAN VS. 

Results 

The CPU times required to achieve the stated convergence criterion for STMPLEC, SIMPLER 
and CELS, are shown in Figure 3(A) for the confined flow, and Figure 4(A) for the external flow. 
For large under-relaxation in the coefficients (small E), SIMPLEC outperforms SIMPLER, but 
the computational effort required by both methods increases dramatically for E values larger than 
5. By comparison, the performance of CELS lies between STMPLEC and SIMPLER at small E, 
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Figure 3. Computational effort (A) and number of coefficient update iterations (B) to achieve the prescribed accuracy in 
pressure vs. distorted time step parameter, E ,  for the confined flow 
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Figure 4. Computational effort (A) and number of coefficient update iterations (B) to achieve the prescribed accuracy in 
pressure vs. distorted time step parameter, E ,  for the external test flow problem 

and decreases monotonically with E towards a constant value. The competitive performance 
relative to refined state-of-the-art solution methods at small E, the distinctly superior performance 
at large E, and the relative simplicity, combine to make CELS a highly attractive method. 

SIMPLEC and SIMPLER have been implemented in the recommended manner whereby the 
velocity and pressure equation(s) are solved only once for each new set of coefficients. Insight into 
the relative performances of the three methods can also be gained by examining the number of 
coefficient updates required to reach the prescribed convergence criterion. These are shown in 
Figures 3(B) and 4(B) for the confined and external flows, respectively. Figure 3(B) shows that all 
three methods required roughly the same number of updates at small E so that the higher cost of 
SIMPLER results from the need to solve an extra pressure equation. The sharp increase in the 
number of coefficient updates for the segregated methods for E 7 5 reflects the breakdown in the 
pressure-velocity coupling approximation. CELS retains the proper coupling and this results in a 
steady decrease in the required number of coefficient updates with increasing E. For large E, the 
solution time (Figure 3(A)) does not continue to fall with the decrease in number of coefficient 
updates (Figure 3(B)) because of the corresponding increase in computational effort required to 
solve each linear set. 

The results presented in Figures 3 and 4 were obtained using optimal values of the residual 
reduction criteria used to terminate iteration on the equations that are solved within the coefficient 
update loop, as previously described. It has been established, by running numerical experiments, 
that all three methods are about equally sensitive to departures of these criteria from their optimal 
value. 
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CLOSING REMARKS 

A solution method has been described that is based on the exact solution of the momentum 
equations and continuity equation along a line. Tests of this method have demonstrated that such a 
solver is competitive, in terms of execution time and in terms of the simplicity of the derivation and 
the coding, when compared to state-of-the-art segregated solvers applied to complex incompres- 
sible flows. The method is also more robust in terms of its insensitivity to the major relaxation 
factor (relaxation at the coefficient update level) due to the improved handling of the pressure- 
velocity coupling. 

Other couplings between the governing equations for incompressible flows can be of equal or 
greater importance than the pressure-velocity coupling. Examples include the increased inter- 
momentum equation coupling arising through the acceleration terms present in general 
orthogonal co-ordinates, or the temperature-velocity coupling in non-isothermal flows. Coupled 
line solvers based on the CELS procedure that include the above couplings are currently under 
investigation. Initial results indicate that the computational effort can be dramatically reduced 
from that of segregated methods. 
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APPENDIX: PENTA-DIAGONAL MATRIX SOLUTION ALGORITHM (PDMA) 

For completeness, the PDMA algorithm is given below. It is derived exactly as the tri-diagonal 
matrix algorithm (TDMA), except the PDMA derivation requires one further elimination. 

In general, any penta-diagonal system of equations can be written as: 

a P # i = a E E c b i + 2  +a,cbi+i +a,+<-, +awwcbi-2 +b. (15) 
Equation (15) is solved by manipulating the above equation into the following upper diagonal 
(recursive) form: 

c b i  = Aicbi + 2 + Bicbi + I + Ci7 (16) 
where 

A, = aEE/F 

Bi = (aE + DAi-  l)/F 

Ci = (bp + D C i - i  + aWwCi-,)/F 

D =a, + aWwBi-, 

F = up - awwAi-  - DBi- 
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